If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+x^2=10
We move all terms to the left:
3x+x^2-(10)=0
a = 1; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·1·(-10)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-7}{2*1}=\frac{-10}{2} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+7}{2*1}=\frac{4}{2} =2 $
| r-11/2=5 | | 7b-1-7=15 | | 6/x=18/51 | | m−13.7=1.2 | | 25/15=n/3 | | 7(10+9n)+6=13 | | 3(2x-9)^2=27 | | -7x-3(x-8)=104 | | 7-6x=-113 | | t/2=1.93 | | |x-3|-10=15 | | x−10=7 | | -6=4v-7v | | 6+2(6x+10)=50 | | 3t^2+-2t+-3=0 | | 1x+6=7x+0 | | (2m+12)=7m-3 | | x-31=33 | | 4+8=2x | | 22=-2(5x+4) | | 220=w(11 | | 8m+(7m-1)=(5-m)-(3-m) | | (7-x)+4=2x+5 | | x-90=-81 | | 2x=77-22 | | -36=-81p^2 | | y5=4 | | y =4 | | 4+2x/2=9 | | 8(r+10)+6=102 | | 4(k²-4)=0 | | (7-v)=3 |